skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Early, Angela_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundImmune responses need to be initiated rapidly, and maintained as needed, to prevent establishment and growth of infections. At the same time, resources need to be balanced with other physiological processes. On the level of transcription, studies have shown that this balancing act is reflected in tight control of the initiation kinetics and shutdown dynamics of specific immune genes. ResultsTo investigate genome-wide expression dynamics and trade-offs after infection at a high temporal resolution, we performed an RNA-seq time course onD. melanogasterwith 20 time points post Imd stimulation. A combination of methods, including spline fitting, cluster analysis, and Granger causality inference, allowed detailed dissection of expression profiles, lead-lag interactions, and functional annotation of genes through guilt-by-association. We identified Imd-responsive genes and co-expressed, less well characterized genes, with an immediate-early response and sustained up-regulation up to 5 days after stimulation. In contrast, stress response and Toll-responsive genes, among which were Bomanins, demonstrated early and transient responses. We further observed a strong trade-off with metabolic genes, which strikingly recovered to pre-infection levels before the immune response was fully resolved. ConclusionsThis high-dimensional dataset enabled the comprehensive study of immune response dynamics through the parallel application of multiple temporal data analysis methods. The well annotated data set should also serve as a useful resource for further investigation of theD. melanogasterinnate immune response, and for the development of methods for analysis of a post-stress transcriptional response time-series at whole-genome scale. 
    more » « less